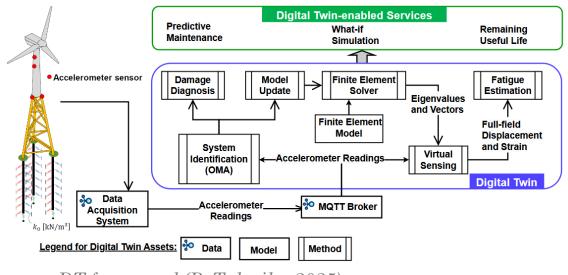
A flexible finite element tool for digital twin services

The 2025 INTO-CPS overture summit Anders Malund Dammark Jensen, Giuseppe Abbiati Aarhus University - Department of Civil and Architectural Engineering 11 July 2025

Introduction: Background and motivation


Goal of the research project is to develop a digital twin for structural system with flexible moving parts

Digital Twin (DT) solution

• A DT is a digital representation of a physical object, that through data exchange, reflects evolution of a physical twin over time

What is required?

- A flexible framework, which simulates the structural systems
- Finite element solver combined with multibody dynamical framework

DT framework(P. Talasila, 2025)

Introduction: Scope

To address these challenges, this preliminary work presents a

- A from-scratch implementation that seamlessly integrates flexible body dynamics and FEM.
- A framework designed with a high degree of mobility in mind, prioritizing modularity, maintainability, compatibility and ease of distribution
- Addresses key challenges in computational performance, numerical stability, and software architecture, with applications spanning mechanical systems and input- state estimations requiring mid to high-fidelity dynamic analysis.

Outline

Theoretical basis

- <u>Architecture</u>

Software comparisons

<u>Tech stack</u>

Future work

S /

YaFEM: Theoretical basis

System of equations

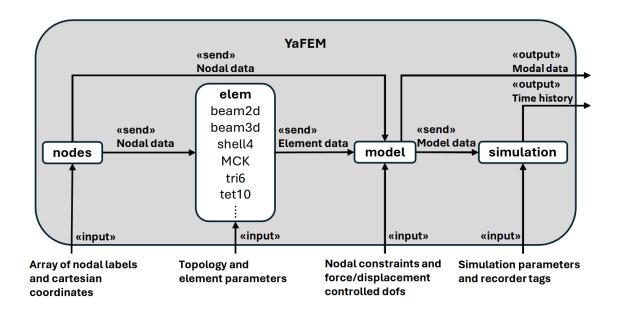
 $\begin{cases} \mathbf{M}\mathbf{a} + \mathbf{C}_{p}\mathbf{v} + \mathbf{r}(\mathbf{u}, \mathbf{v}, \mathbf{g}_{q}(t)) = \mathbf{B}_{f}\mathbf{g}_{f}(t) + \mathbf{B}_{u}\mathbf{g}_{l}(t) \\ \mathbf{B}_{u}^{T}\mathbf{u} = \mathbf{g}_{u}(t) \end{cases}$

Where;

 \mathbf{M}, \mathbf{C}_p are the mass and proportional damping matrix $\mathbf{u}, \mathbf{v}, \mathbf{a}$ are the displacement, velocity and acceleration vector $\mathbf{g}_q, \mathbf{g}_f, \mathbf{g}_l$ are the temperature, force and displacement history vector \mathbf{r} is the restoring force vector $\mathbf{B}_u, \mathbf{B}_f$ are the collocation matrices for controlled displacement and controlled forces

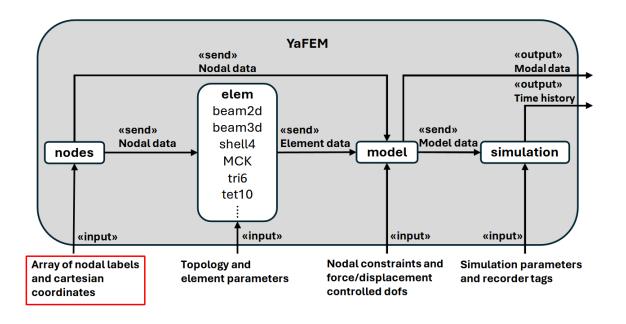
Proportional damping using coefficients

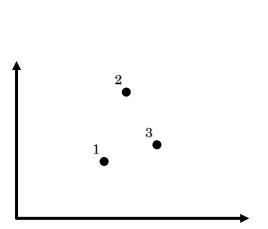
$$\mathbf{C}_p = \mathbf{M}\alpha + \mathbf{K}\beta$$


Mass, damping and stiffness matric computed using collocation matrices

$$\mathbf{M} = \sum_{a=1}^{n} \mathbf{Z}_{u,e}^{\top} \mathbf{M}_{e} \mathbf{Z}_{u,e} \quad , \quad \mathbf{C} = \sum_{a=1}^{n} \mathbf{Z}_{u,e}^{\top} \mathbf{C}_{e} \mathbf{Z}_{u,e} \quad , \quad \mathbf{K} = \sum_{a=1}^{n} \mathbf{Z}_{u,e}^{\top} \mathbf{K}_{e} \mathbf{Z}_{u,e}$$

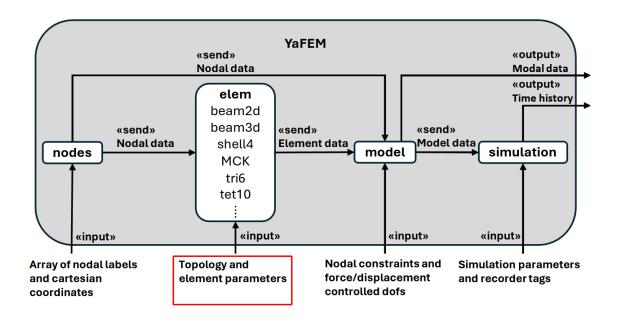
Response matrix of displacement, velocity and temperature

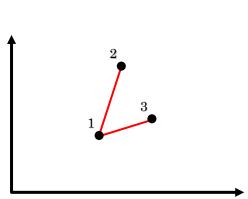

 $\mathbf{u}_e = \mathbf{Z}_{u,e} \mathbf{u} \quad , \quad \mathbf{v}_e = \mathbf{Z}_{u,e} \mathbf{v} \quad , \quad \mathbf{q}_e = \mathbf{Z}_{q,e} \mathbf{g}_q(t)$


Modal analysis

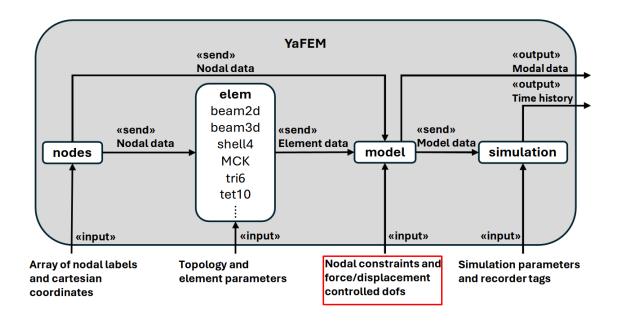
 $\left(\mathbf{K} - \omega_{m,i}^2 \mathbf{M}\right) \Phi_{m,i} = 0$ AARHUS UNIVERSITY

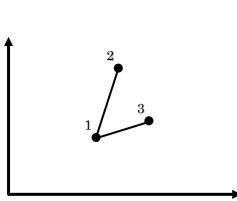
∃•

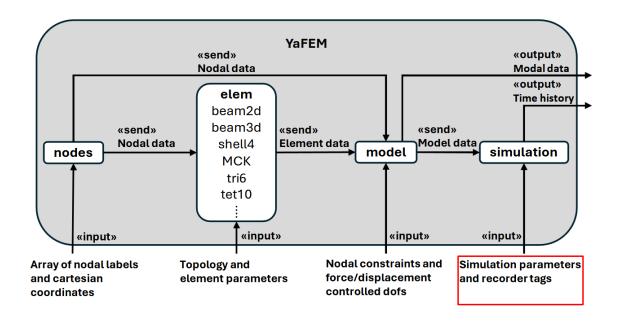


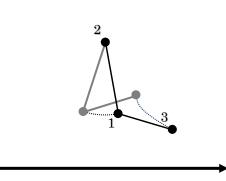


3


Ŵ




-}•



-}•

-}•

Â

YaFEM: Software comparisons

- Matlab
- Julia
- Python

Feature	Python	Julia	Matlab		
Open source	Yes	Yes	No		
Ease of maintenance	High (OOP supported)	Moderate	High (OOP supported)		
Speed	Slow	Fast	Fast		
Distribution	Easy	Easy	Limited		
Community	Large	Growing	Moderate		

7

YaFEM: Tech stack

Symbolic expressions

• Sympy

Numerical expressions

- Numpy
- Scipy
- Jax

Graphical representations matpletlib

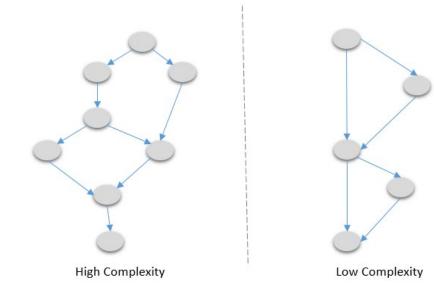
• Matplotlib

Python standard library

- JSON
- Concurrent

- Cyclomatic complexity
- Halstead complexity
- Maintainability index

Î


ılı.

Cyclomatic complexity

$$CC = E - N + 2P$$

Where;

- E is the number of edges in the control flow graph
- N is the number of nodes in the control flow graph
- P is the number of connected components

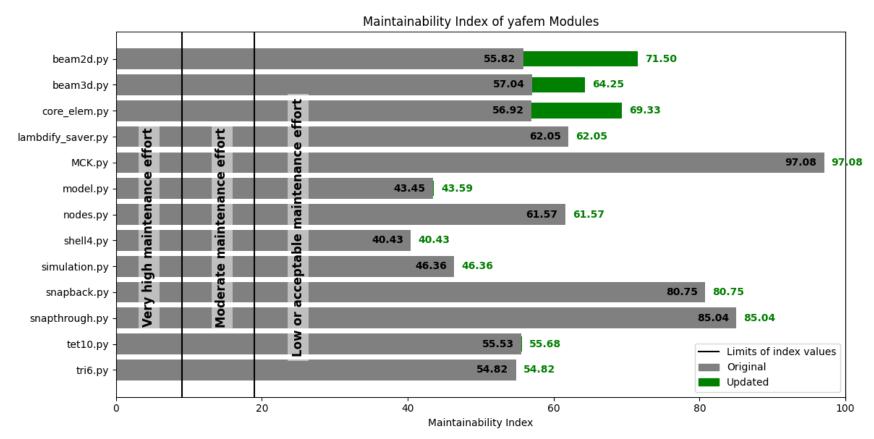
Â

ılı.

Halstead complexity

Metric	Meaning	Formula		
Vocabulary	Number of unique operators and operands	$h = h_1 + h_2$		
Program Length	Occurrences of operators and operands	$N = N_1 + N_2$		
Program Length	Theoretical optimal program length	$\hat{N} = h_1 \log_2 h_1 + h_2 \log_2 h_2$		
Volume	Total information content in the program	$V = N \cdot \log_2 h$		
Difficulty	Complexity of understanding the code	$D = \frac{h_1}{2} \cdot \frac{N_2}{h_2}$		
Effort	Effort required to write or understand	$E = D \cdot V$		
Time	Estimated time (seconds) to understand	$T = \frac{E}{18}$		
Estimated Bugs	Approximate number of potential bugs	$B = \frac{V}{3000}$		

R.


Maintainability index

$$MI = \max \begin{cases} 0 \\ (171 - 5.2 \cdot \ln(V) - 0.23 \cdot (CC) - 16.2 \cdot \ln(LOC)) \cdot 100/171 \end{cases}$$

Index Value	Meaning			
0-9	Very high maintenance effort			
10-19	Moderate maintenance effort			
20-100	Low or acceptable maintenance effort			

R.

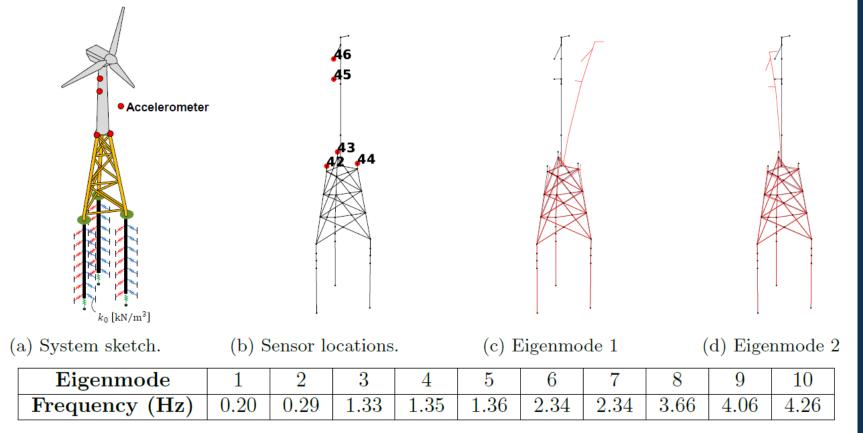
Maintainability index

S V

Ŷ

Use cases

• Offshore wind turbine model

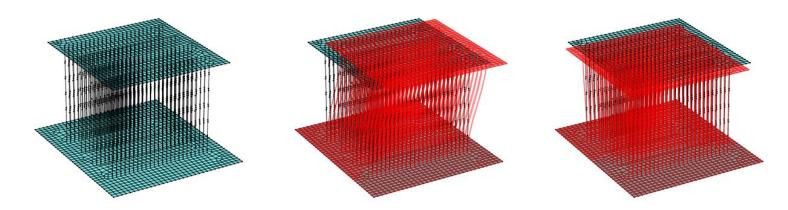

P. Talasila, D. Tcherniak, A.M.D. Jensen, S. Mahato, A. Sch"orghofer-Queiroz, M.D. Ulriksen, G. Abbiati, P.G. Larsen, L. Damkilde: "Structural Health Monitoring of Engineering Structures Using Digital Twins: A Digital Twin Platform Approach" Accepted and submitted paper for EVACES 2025 - International Conference On Experimental Vibration Analysis for Civil Engineering Structures

• Cooler model Part of CP-SENS project Ŕ

竹

Offshore wind turbine model

- Aim
- Modelling
 - Beam elements
 - MCK element (RNA element)



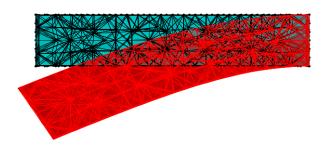
Ŷ

竹

Cooler model

- Modelling
- Served as a great case study to optimize YaFEM
 - Speed
 - Scalability
 - Mixed elements
 - Compatibility

(a) Model plot			(b) Eigenmode 1			(c) Eigenmode 2				
Eigenmode	1	2	3	4	5	6	7	8	9	10
Frequency (Hz)	22.5	22.7	139.6	200.8	201.2	201.3	201.6	201.7	201.7	201.8


Ŷ

祄

Future Work

YaFEM

- 6 noded triangle shell element (tri6)
- 10 noded tetrahedron volume element (tet10)
- Upload YaFEM to PYPI
- Add warm-start strategy
- Add increment matrix update strategy

Î.

Î

~~~